UPC Appendix M Peak Water Demand Calculator

The purpose of this fact sheet is to provide information about an alternative approach for sizing water pipes in new residential buildings using 2024 Uniform Plumbing Code (UPC) Appendix M Peak Water Demand Calculator (also known as the IAPMO Water Demand Calculator®).

Scope of 2024 UPC Appendix M

2024 UPC Appendix M Peak Water Demand Calculator provides a method for estimating the demand load for the building water supply, principal branches, and risers for single family and multifamily dwellings.

The calculations applies to new construction and can justify the use of existing premise plumbing for renovation or adaptive reuse projects.

Background

Key points about the IAPMO Water Demand Calculator:

- First major, peer-reviewed update of peak water demand sizing in buildings in over 80 years in response to the increased prevalence of low-flow fixtures in the United States.
- Culmination of a multi-year project (2011- 2017) sponsored by IAPMO in collaboration with the University of Cincinnati and the American Society of Plumbing Engineers (ASPE).
- Initial adoption as Appendix M in 2018 UPC.
- Calculations are available as a free Excel-based tool.

Benefits

Using the IAPMO Water Demand Calculator to size water pipes results in:

- Construction cost savings due to smaller diameter pipes and fittings, less pipe insulation material, and reduced water service entrance size.
- Ongoing cost savings to occupants and homeowners from water and energy savings.
- · Faster delivery of hot water to occupants.
- · Water and embedded energy savings due to faster hot water delivery times.
- Additional energy savings due to decreased heat loss in the hot water distribution system, particularly in multifamily buildings with a recirculation system.
- Reduced carbon emissions due to material savings and energy reductions.
- Reduced public health and safety risk and improved water quality due to shorter water dwell times in premise plumbing systems.

Adoption in Minnesota and Other States

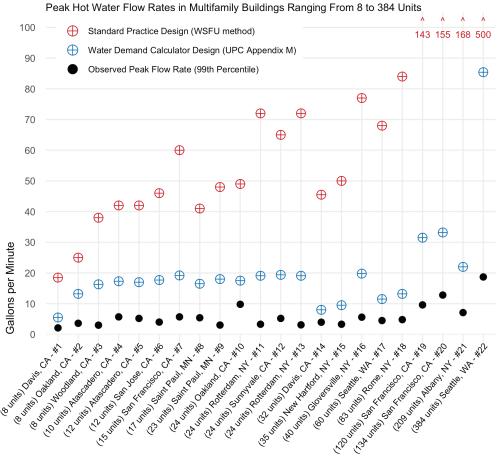
- In late 2023, Minnesota Plumbing Board formed 2024 UPC Ad Hoc Rulemaking Committee that plans to propose recommendations on adoption of 2024 UPC to the Plumbing Board in April 2025. The Committee plans to review UPC Appendix M for possible adoption.
- Ten states have already adopted the WDC as an alternative water demand sizing method including California, Hawaii, Montana, Nevada, New Jersey, New Mexico, North Dakota, Oregon, Washington, and Wisconsin.

2024 UNIFORM PLUMBING CODE MINNESOTA PLUMBING CODE

More Information

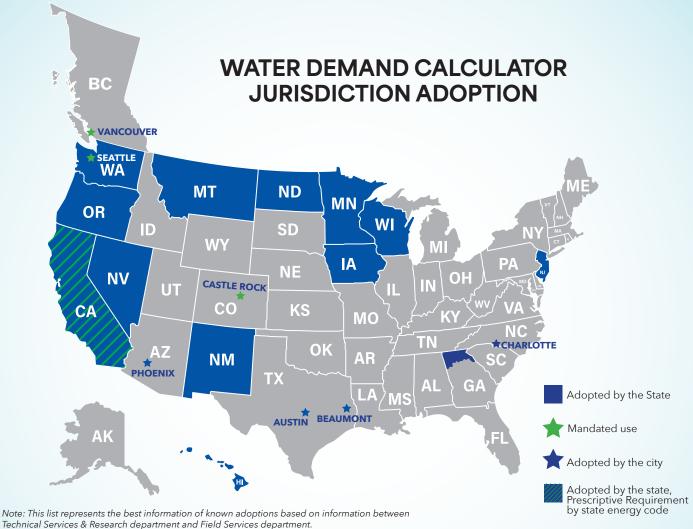
- 2024 UPC, Appendix M Peak Water Demand Calculator https://epubs.iapmo.org/2024/UPC/#p=466

 https://www.iapmo.org/water-demand-calculator/
- 2017 Study on Peak Water Demand by S. Buchberger et al. (basis for the Water Demand Calculator®) www.iapmo.org/media/3857/peak-water-demand-study-executive-summary.pdf
- 2020 Study on the Water Demand Calculator by Stantec
 (assessment of cost savings from applying the Water Demand Calculator®)
 www.iapmo.org/group/update/stantec-wdc-savings-study
- 2021 Report on Connection Fees and Service Charges by Meter Size by Alliance for Water Efficiency (assessment of cost savings from downsizing meters) www.iapmo.org/media/25939/awe-meter-size-connection-fee-research.pdf
- 2023 Report on Energy and Carbon Savings Opportunities by Arup (assessment of water, energy, and carbon savings from applying the Water Demand Calculator www.iapmo.org/media/31469/iapmo_energy_savings_arup_report.pdf
- 3-min Intro Video by Towle Whitney https://vimeo.com/734711521/1874e812cd
- 1-hr Training on How to Use the Water Demand Calculator from 2017 IAPMO Annual Conference https://youtu.be/TWKPfT1pu3U


What's wrong with the current method?

The figure below shows how the current design method (using Water Supply Fixture Units or WSFU) drastically overestimates the peak water demand in multifamily buildings. The Water Demand Calculator design method is a closer match to the actual peak water use observed in 20 multifamily buildings.

The design estimates calculated using the WSFU method (red markers) are 5 to 27 times larger than the observed peak flow rates. Overestimating peak water flow rates results in pipe diameters that are much larger than needed for modern buildings. The last four red markers are literally off the chart, predicting peak water use of over 140 gallons per minute.


The design estimates calculated using the Water Demand Calculator (blue markers) are between 2 and 6 times the observed peak flow rates. The Water Demand Calculator can be used to more accurately, but still conservatively, calculate peak water flow rates in residential occupancies.

Standard Practice Design Greatly Exceeds Actual Peak Flow Rates

Figure 1 Comparison of Design to Actual Peak Flow Rates in Multifamily Buildings.

Credits: Observed peak flow rate data was collected and provided by the Association for Energy Affordability,
Center for Energy and Environment, E2G Solar, Ecotope, Frontier Energy, and the University of California Davis Western Cooling
Efficiency Center. This project was supported in part by a grant from the Minnesota Department of Commerce,
Division of Energy Resources through the Conservation Applied Research and Development (CARD) program.

Foster Clty, CA https://www.codepublishing.com/CA/FosterCity/?FosterCity15/FosterCity1516.html&?f

San Jose, CA https://library.municode.com/ca/san_jose/codes/code_of_ordinances?nodeId=TIT24TECO_CH24.04PLCO_PT1ADCPPR_

Charlotte, NC (Water Department) domestic-meter-selection-guidelines.pdf (charlottenc.gov)

Hawaii https://up.codes/viewer/hawaii/upc-2018/chapter/M/peak-water-demand-calculator#M%20101.0

Nevada https://up.codes/viewer/nevada/upc-2018/chapter/M/peak-water-demand-calculator#M

New Mexico https://www.rld.nm.gov/wp-content/uploads/2022/03/14.8.2 Integrated-003.pdf

North Dakota Section 62-03.1-01-01 - Conformance with the North Dakota Plumbing Code, N.D. Admin. Code 62-03.1-01-01 | Casetext Search + Citator Oregon https://epubs.iapmo.org/2021/OPC/

 $Seattle, WA \ \underline{Mtps://www.seattle.gov/Documents/Departments/SDCI/Codes/PlumbingCode/2018SeattlePlumbingCode.pdf. A seattle was a seattle with the seattle of the seattle was a seattle with the seattle was a sea$

Wisconsin https://www.iapmo.org/media/29759/wisconsin_pp-031603529-ptoaa.pdf

WATER DEMAND CALCULATOR STANDARD ADOPTION LIST

STATE	REFERENCED	NOTES
WELL Building Institute	X	Standard for wellness, water section
FGI Healthcare Guidelines	X (2026)	Healthcare Code Appendix (Proposed)
Green Building Initiative	X	Standard for green buildings
AWWA M22	X	Standard for water meter sizing
Pacific Institute Water Use Advisory Group Proposed	X	Report, structural water savings
ASPE Engineering Methodologies to Reduce the Risk of Legionella in Premise Plumbing Systems	X	Guide, Legionella Risk Mitigation. Recommend using Water Demand Calculator to reduce water age.
ASPE Plumbing Engineering Design Handbook 2: Plumbing Systems 2022 - 2023	X	Guidance for water systems sizing, referenced as accepted engineering practice